A Fast, Minimal Memory, Consistent Hash Algorithm

John Lamping, Eric Veach
Google

Abstract

We present jump consistent hash, a fast, minimal memory, consistent hash algorithm that can
be expressed in about 5 lines of code. In comparison to the algorithm of Karger et al., jump
consistent hash requires no storage, is faster, and does a better job of evenly dividing the key
space among the buckets and of evenly dividing the workload when the number of buckets
changes. Its main limitation is that the buckets must be numbered sequentially, which makes it
more suitable for data storage applications than for distributed web caching.

Introduction

Karger et al. [1] introduced the concept of consistent hashing and gave an algorithm to
implement it. Consistent hashing specifies a distribution of data among servers in such a way
that servers can be added or removed without having to totally reorganize the data. It was
originally proposed for web caching on the Internet, in order to address the problem that clients
may not be aware of the entire set of cache servers.

Since then, consistent hashing has also seen wide use in data storage applications. Here, it
addresses the problem of splitting data into a set of shards, where each shard is typically
managed by a single server (or a small set of replicas). As the total amount of data changes, we
may want to increase or decrease the number of shards. This requires moving data in order to
split the data evenly among the new set of shards, and we would like to move as little data as
possible while doing so.

Assume, for example, that data consisting of key-value pairs is to be split into 10 shards. A
simple way to split the data is to compute a hash, h(key), of each key, and store the
corresponding key-value pair in shard number h(key) mod 10. But if the amount of data grows,
and now needs 12 shards to hold it, the simple approach would now assign each key to shard
h(key) mod 12, which is probably not the same as h(key) mod 10; the data would need to be
completely rearranged among the shards.

But it is only necessary to move 1/6 of the data stored in the 10 shards in order to end up with
the data balanced among 12 shards. Consistent hashing provides this. Our jump consistent
hash function takes a key and a number of buckets (i.e., shards), and returns one of the buckets.
The function satisfies the two properties: (1) about the same number of keys map to each
bucket, and (2) the mapping from key to bucket is perturbed as little as possible when the
number of buckets is changed. Thus, the only data that needs to move when the number of



buckets changes is the data for the relatively small number of keys whose bucket assignment
changed.

The jump consistent hash algorithm is fast and has a large memory advantage over the one
presented in Karger et al. Their algorithm needs thousands of bytes of storage per candidate
shard in order to get a fairly even distribution of keys. In a large data storage application, where
there may be thousands of shards, that means that each client needs megabytes of memory for
its data structures, which must be stored long term for the algorithm to be efficient. In contrast,
jump consistent hash needs no memory beyond what fits in a few registers. Jump consistent
hash also does a better job of splitting the keys evenly among the buckets, and of splitting the
rebalancing workload among the shards. On the other hand, jump consistent hash does not
support arbitrary server names, but only returns a shard number; it is thus primarily suitable for
the data storage case.

Figure 1 shows a complete implementation of jump consistent hash. Its inputs are a 64 bit key
and the number of buckets. It outputs a bucket number in the range [0, num_buckets). The rest
of this note explains what is going on in this code and gives theoretical and empirical
performance results.

int32_t JumpConsistentHash (uint64 t key, int32 t num buckets) {

int64d t b = -1, j = 0;
while (j < num buckets) {
b= 73;
key key * 2862933555777941757ULL + 1;

j = (b + 1) * (double(l1LL << 31) / double((key >> 33) + 1));
}

return b;

Figure 1: Jump Consistent Hash algorithm in C++.

Related work

Karger et al.’s consistent hash algorithm works by associating each bucket with a number of
randomly chosen points on the unit circle. Given a key, it hashes the key to a position on the unit
circle, proceeds along the circle in a clockwise direction from there until it finds the first chosen
point, and returns the bucket associated with that point. Storing the association requires memory
proportional to the number of buckets times the number of points chosen per bucket. Karger et
al.’s experiments used 1000 points per bucket to get to a standard deviation of 3.2% in the
number of keys assigned to different buckets.
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The only other algorithm we are aware of that computes a consistent hash is the rendezvous
algorithm by Thaler and Ravishankar [3]. Used as a consistent hash, the original version of their
algorithm takes a key, and for each candidate bucket, computes a hash function value h(key,
bucket). It then returns the bucket for which the hash yielded the highest value. This requires
time proportional to the number of buckets. Wang et al. [4] show how the buckets can be
organized into a tree to make the time proportional to the log of the number of buckets. But their
variant comes at the cost of balance when shards are added or removed, because they only
re-balance across the lowest level nodes of their tree.

Both of these algorithms allow buckets to have arbitrary ids, and handle not only new buckets
being added, but also arbitrary buckets being removed. This ability to add or remove buckets in
any order can be valuable for cache servers where the servers are purely a performance
improvement. But for data storage applications, where each bucket represents a different shard
of the data, it is not acceptable for shards to simply disappear, because that shard is only place
where the corresponding data is stored. Typically this is handled by either making the shards
redundant (with several replicas), or being able to quickly recover a replacement, or accepting
lower availability for some data. Server death thus does not cause reallocation of data; only
capacity changes do. This means that shards can be assigned numerical ids in increasing order
as they are added, so that the active bucket ids always fill the range [0, num_buckets).

Only two of the four properties of consistent hashing described in the Karger et al. paper are
important for data storage applications. These are balance, which essentially states that objects
are evenly distributed among buckets, and monotonicity, which says that when the number of
buckets is increased, objects move only from old buckets to new buckets, thus doing no
unnecessary rearrangement. Their other two properties, spread and load, both measure the
behavior of the hash function under the assumption that each client may see a different arbitrary
subset of the buckets. Under our data storage model this cannot happen, because all clients see
the same set of buckets [0, num_buckets). This restriction enables jump consistent hash.

Explanation of the algorithm

Jump consistent hash works by computing when its output changes as the number of buckets
increases. Let ch(key, num_buckets) be the consistent hash for the key when there are
num_buckets buckets. Clearly, for any key, k, ch(k, 1) is 0, since there is only the one bucket. In
order for the consistent hash function to balanced, ch(k, 2) will have to stay at O for half the keys,
k, while it will have to jump to 1 for the other half. In general, ch(k, n+1) has to stay the same as
ch(k, n) for n/(n+1) of the keys, and jump to n for the other 1/(n+1) of the keys.

Here are examples of the consistent hash values for three keys, k1, k2, and k3, as num_buckets
goes up:
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A linear time algorithm can be defined by using the formula for the probability of ch(key, j)
jumping when j increases. It essentially walks across a row of this table. Given a key and
number of buckets, the algorithm considers each successive bucket, j, from 1 to
num_buckets-1, and uses ch(key, j) to compute ch(key, j+1). At each bucket, j, it decides
whether to keep ch(k, j+1) the same as ch(k, j), or to jump its value to j. In order to jump for the
right fraction of keys, it uses a pseudo-random number generator with the key as its seed. To
jump for 1/(j+1) of keys, it generates a uniform random number between 0.0 and 1.0, and jumps
if the value is less than 1/(j+1). At the end of the loop, it has computed ch(k, num_buckets),
which is the desired answer. In code:

int ch(int key, int num buckets) {
random. seed (key) ;
int b = 0; // This will track ch(key, j+1).
for (int j = 1; j < num buckets; j++) {
if (random.next() < 1.0 / (3 + 1)) b = 3;
}

return b;

We can convert this to a logarithmic time algorithm by exploiting that ch(key, j+1) is usually
unchanged as j increases, only jumping occasionally. The algorithm will only compute the
destinations of jumps -- the j's for which ch(key, j+1) # ch(key, j). Also notice that for these j’s,
ch(key, j+1) =j. To develop the algorithm, we will treat ch(key, j) as a random variable, so that
we can use the notation for random variables to analyze the fractions of keys for which various
propositions are true. That will lead us to a closed form expression for a pseudo-random variable
whose value gives the destination of the next jump.

Suppose that the algorithm is tracking the bucket numbers of the jumps for a particular key, k.
And suppose that b was the destination of the last jump, that is, ch(k, b) # ch(k, b+1), and ch(k,
b+1) = b. Now, we want to find the next jump, the smallest j such that ch(k, j+1) # ch(k, b+1), or
equivalently, the largest j such that ch(k, j) = ch(k, b+1). We will make a pseudo-random variable
whose value is that j. To get a probabilistic constraint on j, note that for any bucket number, i, we
have j 2 i if and only if the consistent hash hasn’t changed by i, that is, if and only if ch(k, i) =
ch(k, b+1). Hence, the distribution of j must satisfy



P(j 2 i) = P( ch(k, i) = ch(k, b+1) )

Fortunately, it is easy to compute that probability. Notice that since P( ch(k, 10) = ch(k, 11) ) is
10/11, and P( ch(k, 11) = ch(k, 12) ) is 11/12, then P( ch(k, 10) = ch(k, 12) ) is 10/11 * 11/12 =
10/12. In general, if n 2 m, P( ch(k, n) = ch(k, m) ) =m/n. Thus foranyi> b,

P 21i)=P(ch(k, i) =ch(k, b+1) )= (b+1)/1i.

Now, we generate a pseudo-random variable, r, (depending on k and j) that is uniformly
distributed between 0 and 1. Since we want P(j i) = (b+1) /i, we set P(j 2 i) iff r < (b+1) / i.
Solving the inequality for i yields P(j 2 i) iffi < (b+1) / r. Since i is a lower bound on j, j will equal
the largest i for which P(j 2 i), thus the largest i satisfying i < (b+1) / r. Thus, by the definition of
the floor function, j = floor((b+1) / r).

Using this formula, jump consistent hash finds ch(key, num_buckets) by choosing successive
jump destinations until it finds a position at or past num_buckets. It then knows that the previous
jump destination is the answer.

int ch(int key, int num buckets) {
random. seed (key) ;

int b = -1; // bucket number before the previous Jjump
int j = 0; // bucket number before the current jump
while (j < num buckets) ({

b = 73;

r = random.next ();

3 floor((b + 1) / r);

}

return = b;

To turn this into the actual code of figure 1, we need to implement random. We want it to be fast,
and yet to also to have well distributed successive values. We use a 64-bit linear congruential
generator; the particular multiplier we use produces random numbers that are especially well
distributed in higher dimensions (i.e., when successive random values are used to form tuples)
[2]. We use the key as the seed. (For keys that don'’t fit into 64 bits, a 64 bit hash of the key
should be used.) The congruential generator updates the seed on each iteration, and the code
derives a double from the current seed. Tests show that this generator has good speed and
distribution.

It is worth noting that unlike the algorithm of Karger et al., jump consistent hash does not require
the key to be hashed if it is already an integer. This is because jump consistent hash has an
embedded pseudorandom number generator that essentially rehashes the key on every iteration.
The hash is not especially good (i.e., linear congruential), but since it is applied repeatedly,



additional hashing of the input key is not necessary.
Performance Analysis

The time complexity of the algorithm is determined by the number of iterations of the while loop.
The while loop visits successive jump destinations, which are all less than the number of
buckets n except for the last. Thus the expected number of iterations is one more than the the
expected number of jumps below n. Since the chance that there is a jump at number of buckets i
is 1/i, the expected number of jumps to destinations less than n is just the sum of 1/i for i from 2
to n, which is less than In(n). So the expected number of iterations is less than In(n) + 1.

It is interesting to note that jump consistent hash makes fewer expected jumps (by a constant
factor) than the log2(n) comparisons needed by a binary search among n sorted keys.

Performance Measurements
Key Distribution

First we investigate how the algorithms compare in terms of distributing the keys uniformly
among buckets. Recall that each key is first mapped to an integer hash value, which is then
mapped to a corresponding bucket. The first step is common to both algorithms, so we focus on
the second step. Ideally, all buckets should receive the same fraction of hash values. We can
measure the deviation from this ideal by computing the standard error (o/p) of the fraction of
hash values assigned to each bucket. Note that for Karger et al.'s algorithm, this depends on the
number of points chosen per bucket. The following table summarizes the results:

Algorithm Points per | Standard Error Bucket Size
Bucket 99% Confidence Interval
Karger et al. 11 0.9979060 (0.005, 5.25)
10 [ 0.3151810 (0.37, 1.98)
100 | 0.0996996 (0.76, 1.28)
1000 | 0.0315723 (0.92, 1.09)
Jump Consistent Hash 0.00000000764 (0.99999998, 1.00000002)

Figure 2: Measures of key space distribution uniformity among buckets.

The last column gives a 99% confidence interval for the bucket size compared to the average
bucket size. For example, if Karger et al.'s algorithm is used with 10 points per bucket, then
approximately 1% of the buckets will be less than 0.37x smaller than average or more than 1.98x
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larger than average. This can lead to obvious problems with respect to load balancing. Even with
1000 points per bucket, approximately 1% of buckets will be at least 8% larger or smaller than
average. In contrast jump consistent hash divides the key space almost perfectly.

Of course there are also variations in bucket size due to the distribution of the actual keys. For
many data storage applications, however, there will typically be millions of keys per bucket (e.g.
where each key corresponds to a file, URL, document, etc), in which case the variations due to
key distribution are negligible compared with the variations described above.

The key distribution also affects the rebalancing workload when the number of buckets changes.
When a new bucket is added with jump consistent hash, the new bucket receives an equal
fraction of the key space of each existing bucket. For example, if there are 1000 buckets and a
new bucket is added, then each existing bucket will transfer almost exactly 0.1% of its key
space. With Karger et al.'s algorithm, on the other hand, the only buckets that participate in
rebalancing are the ones that previously contained the points chosen to represent the new
bucket. For example, if there are 1000 buckets with 10 points per bucket, then at most 10
buckets will send some of their data to the new bucket. The amount of data from each bucket
can also vary substantially. This might cause problems, for example, if a bucket is being added
in order to relieve a "hot spot" among the existing buckets: the new bucket has no effect unless
the hot spot happens to be one of the 10 buckets selected, but on the other hand if the hot spot
is selected, then it may not be able to handle the extra workload of transferring a large fraction of
its data. This provides another reason for using a large number of points per bucket with the
Karger et al. algorithm.

Space Requirements

Distributing the keys uniformly among buckets requires using many points per bucket in Karger
et al.'s algorithm, but this increases memory requirements significantly. We implemented two
variations of Karger et al.'s algorithm in addition to jump consistent hash. All implementations are
in C++ and use the Standard Template Library. They were compiled on a 64-bit platform using
Gnu C++ and measured on an Intel Xeon E5-1650 CPU with 32GB of memory.

Our first implementation of Karger et al.'s algorithm ("version A") represents the point data as an
STL map from a 64-bit hash value to a 32-bit bucket number. This is probably easiest and most
natural way to implement the algorithm. Internally the map is represented as a balanced binary
tree. This implementation uses 48 bytes per point per bucket.

The second implementation ("version B") represents the point data as a sorted vector of (hash
value, bucket number) pairs, where the hash values are truncated to 32 bits to save space. The
bucket corresponding to a given hash value is located using binary search. This implementation
uses less space (8 bytes per point per bucket), but unlike the previous implementation, it does
not support dynamic updates efficiently: in order to change the number of buckets, the entire
data structure must be rebuilt.



The table below presents the total data size for various numbers of buckets, assuming that 1000
points per bucket are used (following the example of Karger et al. in their paper).

Number of Buckets Space (Karger, Space (Karger,
Version A) Version B)

10 469 KB 78 KB

1000 46 MB 7.6 MB

100000 4.5 GB 0.75 GB

Figure 3: Space requirements of the Karger et al. implementations.

These relatively large memory requirements are a significant disadvantage when consistent
hashing is used to map requests to servers. Any client that wishes to map a request to the
correct server must have a copy of the consistent hashing data available locally (or else incur
the expense of additional network hops to route the request to its correct destination). This gives
jump consistent hash a significant advantage as the number of buckets grows.

Execution Time
We measured the execution time of both algorithms on the platform described above, using a

benchmark that computes the consistent hash values of a pseudorandom sequence of integer
keys.

Number of Co:lsl?;:)ent Karger A| Karger A| Karger A| Karger B| Karger B| Karger B

buckets| Hash k=10 k=100 k=1000 k=10 k=100 k=1000

2 12 25 44 73 26 45 63

5 20 31 54 92 33 54 70

20 33 44 73 156 44 65 84

150 50 68 140 262 62 81 124

1024 65 120 231 658 78 114 194

8192 81 225 608 1151 114 185 432

65536 96 548 1088 1814 188 418 777
1048576 116
1073741824 165

Figure 4: Execution times with no cache competition. Highlighted columns are graphed below.




Figure 4 compares jump consistent hash to the two Karger et al. implementations with k=10,
k=100, and k=1000 points per bucket, and the corresponding graph illustrates the k=1000 case
only. All times are in nanoseconds and do not include loop overhead. Figure 5 graphs the

highlighted columns of figure 4.
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Figure 5: Graph of execution time of jump consistent hash vs. the Karger et al. implementations.

A few points are worth noting:

The cost of jump consistent hash is logarithmic in the number of buckets, even as the
number of buckets grows very large (billions).

While the Karger et al. implementations also have O(log n) running times, their
performance drops off substantially as the data size gets larger due to cache misses
(which can increase the running time by a large constant factor).

With 1000 points per bucket, jump consistent hash is 3-4x faster for up to 1000 buckets,
and perhaps 5-8x faster for up to 100,000 buckets.

Jump consistent hash is still faster than the the Karger et al. implementations even when
only 10 points per bucket are used (although this is too few to be practical).

More significantly, the execution times above assume that there is no work being done besides
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consistent hashing. But real applications typically have much other work that needs to be done
as well, which competes for the various levels of memory cache. A typical server might receive
a request from somewhere, look up some information in its own data structures, and then send
off one or more requests to a data storage system to fetch additional data needed to satisfy the
request. This last step uses consistent hashing. But for every consistent hashing calculation, the
application almost certainly makes quite a few other memory accesses.

To simulate the behavior of a typical server, we created a benchmark that allocates an additional
1 GB of memory to correspond to the internal data maintained by a server. For each consistent
hash calculation, the benchmark reads 16 random bytes within this memory to simulate hash
table lookups, pointer following, etc. It also reads one 64K contiguous block within this memory
to simulate access to a large in-memory cache.

The following table and graph show the timings of the consistent hash implementations in this
environment. As before, all times are in nanoseconds and loop overhead has been subtracted.

Jump
Number of | Consistent| Karger A| Karger B
buckets| Hash k=1000 k=1000
2 17 262 72
5 26 304 86
20 40 401 115
150 54 766 187
1024 67 1075 341
8192 86 1540 618
65536 103 2221 966
1048576 121
1073741824 176

Figure 6: Execution times with memory cache competition (simulating a typical server).
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Figure 7: Graph of execution times in the presence of memory cache competition.

The benchmark changes affect jump consistent hash only slightly, but for the Karger
implementations the "knee" in the curves is shifted over significantly (i.e., the point where there is
a large constant-factor increase in running time due to cache misses). This corresponds to the
fact that less cache space is available for consistent hashing because of competition from other
code.

Initialization Time
The Karger et al. algorithm can also require a significant amount of time to build its data

structures. The following table shows the time (in seconds) to build the data structures for
various numbers of buckets with k=1000 points per bucket.
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Number of Buckets Karger A, k=1000 Karger B, k=1000
2 0.00024 0.00011

S 0.00072 0.00031

20 0.0039 0.0014

150 0.045 0.012

1024 0.61 0.093

8192 8.94 0.85

65536 111.99 7.66

The main points worth noting are that the balanced-tree implementation (STL map) is relatively
slow to initialize, and that both implementations have very significant initialization times as the
number of buckets grows large. Also note that with the Karger B implementation, the data
structure must be completely rebuilt whenever the number of buckets changes.
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